| Discipline: | Semester: | Name of the Faculty: | |---------------------------------------|---|--| | Mech. Engg. | Third (3 rd) | Er Sanjay Kumar Sahoo | | Subject:
Thermal
Engineering -I | No. of days/week class
allotted:
Five (5) | Semester from Date: 15.09.22 to Date: 15.12.22
No. of Weeks: 15 | | WEEK | CLASS DAY | THEORY TOPICS | | | 1 st | Thermodynamic Systems (closed, open, isolated) | | 1 st | 2 nd | Thermodynamic properties of a system (pressure, volume, temperature, entropy, enthalpy, Internal energy and units of measurement | | | 3 rd | Intensive and extensive properties | | | 4 th | Define thermodynamic processes, path, cycle, state, path function, point function | | | 5 th | Thermodynamic Equilibrium. | | | 1 st | Quasi-static Process | | 2 nd | 2 nd | Conceptual explanation of energy and its sources | | | 3 rd | Work, heat and comparison between the two. | | | 4 th | Mechanical Equivalent of Heat. | | | 5 th | Work transfer, Displacement work | | | 1 st | Review class | | | 2 nd | Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, General gas equation, | | 3 rd | 3 rd | Dalton's law of partial pressure, Guy lussac law, | | | 4 th | characteristic gas constant, Universal gas constant. | |-----------------|-----------------|--| | | 5 th | Explain specific heat of gas (Cp and Cv) | | | 1 st | Relation between Cp & Cv | | 4 th | 2 nd | Enthalpy of a gas. | | 4 | 3 rd | Work done during a non- flow process | | | 4 th | Monthly test -01 | | | 5 th | Application of first law of thermodynamics | | | | to various non flow process (Isothermal, | | | | Isobaric, Isentropic and polytrophic | | | | process) | | | 1 st | Application of first law of thermodynamics | | | | to various non flow process (Isentropic and | | 5 th | | polytrophic process) | | | 2 nd | Solve simple problems on above. | | | 3 rd | Free expansion & throttling process. | | | 4 th | Review class | | | 5 th | State & explain Zeroth law of | | | | thermodynamics. | | | 1 st | State & explain First law of | | | | thermodynamics. | | 6 th | 2 nd | Limitations of First law of thermodynamics | | | 3 rd | Application of First law of Thermodynamics | | | | (steady flow energy equation) | | | 4 th | Application to turbine | | | 5 th | Application to compressor | | | 1 st | Second law of thermodynamics (Claucius & Kelvin Plank statements). | |------------------|-----------------|---| | 7 th | 2 nd | Application of second law in heat engine, refrigerator | | | 3 rd | heat pump, | | | 4 th | determination of efficiencies & C.O.P (solve simple numerical) | | | 5 th | Monthly test -02 | | | 1 st | Review class | | 8 th | 2 nd | Explain & classify I.C engine | | 8 | 3 rd | Terminology of I.C Engine such as bore, | | | | dead centers, stroke volume, piston speed &RPM | | | 4 th | Explain the working principle of 4- stroke engine C.I | | | 5 th | 4-stroke engine S.I engine. | | | 1 st | 2- stroke engine C.I | | 9 th | 2 nd | 2- stroke engine S.I | | 9 | 3 rd | Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine. | | | 4 th | Review class | | | 5 th | Carnot cycle | | | 1 st | problem | | 10 th | 2 nd | Otto cycle | | 10 | 3 rd | problem | | | 4 th | Diesel cycle | |------------------|-----------------|--------------------------| | | 5 th | Monthly test -03 | | | 1 st | problem | | - th | 2 nd | Dual cycle | | 11 th | 3 rd | Solve simple numerical | | | 4 th | Solve simple numerical | | | 5 th | Review class | | | 1 st | Define Fuel. | | - cth | 2 nd | Types of fuel | | 12 th | 3 rd | Different types of fuel. | | | 4 th | Application | | | 5 th | Heating values of fuel. | | | 1 st | Review class | | +h | 2 nd | Review class | | 13 th | 3 rd | Review class | | | 4 th | Review class | | | 5 th | Review class | | | 1 st | Review class | | th | 2 nd | Monthly test -04 | | 14 th | 3 rd | Review class | | | 4 th | Review class | | | 5 th | Review class | | | 1 st | Review class | | | | | | | 2 nd | Review class | | |------------------|-----------------|--------------|--| | 15 th | 3 rd | Review class | | | | 4 th | Review class | | | | 5 th | Review class | |